自适应滤波LMS与RLS的matlab实现MATLAB仿真实现LMS和RLS算法的二阶AR模型及仿真结果分析一、题目概述:二阶AR模型如图1a所示,可以如下差分方程表示: (1)图1a其中,v(n)是均值为0、方差为0.965的高斯白噪声序列。a1,a2为描述性参数,设x(-1)=x(-2)=0,权值w10=w20=0,=0.04推导最优滤波权值(理论分析一下)。按此参数设置,由计算机仿真模拟权值收敛曲线并画出,改变步长在此模拟权值变化规律。对仿真结果进行说明。应用RLS算法再次模拟最优滤波权值。解答思路:(1)高斯白噪声用normrnd函数产生均值为0、方差为0.965的正态分布随机1*N矩阵来实现。随后的产生的信号用题目中的二阶AR模型根据公式(1)产生,激励源是之前产生的高斯白噪声。(2)信号长度N取为2000点,用以观察滤波器权值变化从而估计滤波器系数,得到其收敛值。(3)仿真时分别仿真了单次LMS算法和RLS算法下的收敛性能以及100次取平均后的LMS和RLS算法的收敛性能,以便更好的比较观察