角平分线在三角形中的比例关系关于角平分线,除了知道它把一个角平分为二,以及平分线上任意一点到其两边的距离相等外,它在三角形中还存在一些美丽的对称性质。1,角平分线定理:如图P2,AD平分BAC交BC于点D,求证:BDDC=ABAC【解析】用面积法来证明:如图P2-1,作DEAC于点E,DFAB于点F。则DE=DF,SABDSACD=ABBC;又SABDSACD=BDCD,故BDDC=ABAC。2,如图JP2,在ABC中,AD是BAC的外角平分线,则有ABAC=BDDC。【解析】用面积法可证明此结论,方法同上,具体略。利用上述结论,我们可以快速解决一些问题:3,如图JP3,I是ABC内角平分线的交点,AI交对应边于点D,求证:AIID=(AB+AC)BC。【解析】根据角平分线定理,AIID=ABBD=ACCD,AIID=(AB+AC)(BD+CD)=(AB+AC)BC。4,如图JP4,已知:PA=PB,APB=2ACB,AC与PB相交于点D,且PB=4,PD