解决几何体的外接球与内切球3页.doc

上传人:晟*** 文档编号:7168059 上传时间:2021-09-27 格式:DOC 页数:4 大小:500KB
下载 相关 举报
解决几何体的外接球与内切球3页.doc_第1页
第1页 / 共4页
解决几何体的外接球与内切球3页.doc_第2页
第2页 / 共4页
解决几何体的外接球与内切球3页.doc_第3页
第3页 / 共4页
解决几何体的外接球与内切球3页.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

解决几何体的外接球与内切球,就这6个题型!一、外接球的问题简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径尺或确定球心0的位置问题,其中球心的确定是关键(一) 由球的定义确定球心在空间,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心由上述性质,可以得到确定简单多面体外接球的球心的如下结论结论1:正方体或长方体的外接球的球心其体对角线的中点结论2:正棱柱的外接球的球心是上下底面中心的连线的中点结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点结论4:正棱锥的外接球的球心在其高上,具体位置可通过计算找到结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心(二)构造正方体或长方体确定球心长方体或正方体的外接球的球心是在其体对角线的中点处以下是常见的、基本的几何体补成正方体或长方体的途径与方法途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面都是是直角三角形的三棱锥都分别可构造正方体途径2:同

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。