计数原理与排列组合题型与解题策略一.元素个数较少的排列组合问题枚举法:1、设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?2、学号为1、2、3、4的学生坐到编号为1、2、3、4的四张凳子上,要求学生的学号与其所坐的凳子编号不同,问有多少种不同的坐法?二、特殊元素和特殊位置优先策略3、.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.4、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有 ( )A120种 B96种 C78种 D72种三、相邻捆绑、不相邻插空5、(1)7人站成一排照相, 若要求甲、乙、丙不相邻,则有多少种不同的排法?(2)7人站成一排照相,甲、乙、丙三人相邻,有多少种不同排法?6、马路上有8只路灯,为节约用电又不影响正常的照明,可把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉两端的灯,那么满足条件的关灯方法共有多少种?7、某人射击8枪,命中4枪,4枪命中恰好有