数学期望的计算及应用数学与应用数学111 第四小组引言: 我们知道,随机变量的概率分布是随机变量的一种最完整的数学描述,而数学期望又是显现概率分布特性的最重要的特征数字之一。因此,掌握数学期望的计算并应用他来分析和解决实际问题显得尤为重要。在学习了概率论以后,我们计算数学期望一般有三种方法:1.从定义入手,即;2. 应用随机变量函数的期望公式 3. 利用期望的有关性质。但是还是会碰到许多麻烦,这里我们将介绍一些解决这些难题的简单方法。在现实生活中,许多地方都需要用到数学期望。如果我们可以在学会怎么解决数学期望的计算之后,将数学期望应用到现实生活中。就可以解决许多问题,例如农业上,经济上等多个方面难以解决的难题。 下面就让我们来看看,除了最常用的三种计算方法之外还有哪些可以计算较为棘手的数学期望的方法。1. 变量分解法如果可以把不易求得的随机变量X分解成若干个随机变量之和,应用再进行求解得值,这种方法就叫做变量分解法。这种方法化解了直接用定义求数学期望时的难点问题,因为每一种结果比较好计算,分开来计算便可以比较简单的获得结果。例题1 : 从甲地到乙地的旅游车