线性代数性质定理复习第一章 行列式本章重点是行列式的计算,对于阶行列式的定义只需了解其大概的意思。要注重学会利用行列式的各条性质及按行(列)展开等基本方法来简化行列式的计算,对于计算行列式的技巧毋需作过多的探索。1、行列式的性质(1)行列式与它的转置行列式相等,即。(2)互换行列式的两行(列),行列式变号。(3)行列式中如有两行(列)相同或成比例,则此行列式为零。(4)行列式的某一行(列)中所有元素都乘以同一数,等于用数乘此行列式;换句话说,若行列式的某一行(列)的各元素有公因子,则可提到行列式记号之外。(5)把行列式某一行(列)的各元素乘以同一数,然后加到另一行(列)上,行列式的值不变。(6)若行列式的某一行(列)的各元素均为两项之和,则此行列式等于两个行列式之和。2、行列式的按行(按列)展开(1)代数余子式:把阶行列式中元所在的第行和第列划掉后所剩的阶行列式称为元的余子式,记作;记,则称为元的代数余子式。(2)按行(列)展开定理:阶行列式等于它的任意一行(列)的各元素与对应于它们的代数余子式的乘积之和,即可按第行展开: