线性方程组的解法概括作者:沈进,喻卫来源:教育教学论坛2017年第44期摘要:线性方程组解的存在性和唯一性可以由系数行列式和系数矩阵的秩来判断。针对不同情况的线性方程组,它的解法不是唯一的。常使用的方法有克莱姆法则、逆矩阵法、消元法,选用恰当的方法会简化解方程组的过程。关键词:线性代数;线性方程组;系数矩阵;消元法中图分类号:O151.2 文献标志码:A 文章编号:1674-9324(2017)44-0180-03一、引言线性方程组是线性代数的核心内容。1我们将线性方程组分成齐次和非齐次两大类,具体线性方程组解的存在性和唯一性是不同的,可以通过系数行列式的值与系数矩阵的秩来预判。非齐次线性方程组的解分为三种情况:有解且解唯一、有无穷多组解、无解;齐次线性方程组的解分为两种情况:只有一组零解、有无穷多组非零解。那么在解方程组过程中如何选择正确高效的解法就显得十分重要,恰当的解法会大大提高解题效率。2本文总结了解线性方程组常用的三种方法,并举例展示每种方法在具体线性方程组中的