证明或判断等差(等比)数列的常用方法湖北省 王卫华 玉芳翻看近几年的高考题,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?且听笔者一一道来一、 利用等差(等比)数列的定义在数列中,若(为常数)或(为常数),则数列为等差(等比)数列这是证明数列为等差(等比)数更最主要的方法如:例1(2005北京卷)设数列的首项,且,记()求;()判断数列是否为等比数列,并证明你的结论解:();(),所以,所以,猜想:是公比为的等比数列证明如下:因为所以是首项为,公比为的等比数列评析:此题并不知道数列的通项,先写出几项然后猜测出结论,再用定义证明,这是常规做法。例2(2005山东卷)已知数列的首项,前项和为,且()证明数列是等比数列;()略解:由已知可得时两式相减得:,即,从而,当时,所以,又,所以,从而故总有,又,从而所以数列是等比数列评析:这是常见题型,由依照含的式子再类似写出含的式子,得到的形式,再利用构造的方法得到所要证明的结论本题若是先