弹性力学试题参考答案一、填空题(每小题4分)1最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。2一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。3等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。4平面问题的应力函数解法中,Airy应力函数在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。5弹性力学平衡微分方程、几何方程的张量表示为: ,。二、简述题(每小题6分)1试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。(2)将次要的位移边界条件转化为应力边界条件处理。2图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。题二(2)图