第3章子空间(有限),积空间,商空间在这一章中我们介绍通过已知的拓扑空间构造新的拓扑空间的三种惯用的办法为了避免过早涉及某些逻辑上的难点,在3.2中我们只讨论有限个拓扑空间的积空间,而将一般情形的研究留待以后去作3.1子空间本节重点:掌握度量子空间、拓扑空间子空间的概念,子空间的拓扑与大空间拓扑之间的关系以及子空间的闭集、邻域、基、导集、闭包与大空间相应子集之间的关系及表示法讨论拓扑空间的子空间目的在于对于拓扑空间中的一个给定的子集,按某种“自然的方式”赋予它一个拓扑使之成为一个拓扑空间,以便将它作为一个独立的对象进行考察所谓“自然的方式”应当是什么样的方式?为回答这个问题,我们还是先从度量空间做起,以便得到必要的启发考虑一个度量空间和它的一个子集欲将这个子集看作一个度量空间,必须要为它的每一对点规定距离由于这个子集中的每一对点也是度量空间中的一对点,因而把它们作为子集中的点的距离就规定为它们作为度量空间中的点的距离当然是十分自然的我们把上述想法归纳成定义:定义3.1.1设(X,)是一个度量空间,Y是X的一个子集.