图解法和单纯形法求解以下线性规划问题1.1 图解法解线性规划问题只含两个变量的线性规划问题,可以通过在平面上作图的方法求解,步骤如下:(1) 以变量x1为横坐标轴,x2为纵坐标轴,适当选取单位坐标长度建立平面坐标直角坐标系。由变量的非负性约束性可知,满足该约束条件的解均在第一象限内。(2) 图示约束条件,找出可行域(所有约束条件共同构成的图形)。(3) 画出目标函数等值线,并确定函数增大(或减小)的方向。(4) 可行域中使目标函数达到最优的点即为最优解。然而,由于图解法不适用于求解大规模的线性规划问题,其实用意义不大。1.2 单纯形法解线性规划问题它的理论根据是:线性规划问题的可行域是 n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。