1、传感器原理及应用课程考 核 论 文题 目 电感式微位移传感器 班 级 学 号 姓 名 成 绩 机械与汽车工程学院 机械电子工程系二零一四 年 五 月1目录摘要 2一、传感器简述 2二、 电感式微位移传感器分类 32.1 自感式 3 2.2 互感式 42.3 电涡流式 6 三、电感式微位移传感器系统设计(自感式) 93.1 原理 93.2 测量系统 103.2.1正弦波发生电路 133.2.2相敏检波电路 153.2.3差动放大电路 173.2.4 A/D转换及显示电路 193.2.5 单片机 21四、电感式微位移传感器应用 2223电感式微位移传感器摘要:新技术革命的到来,世界开始进入信息时代
2、。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。电感式微位移传感器主要用于测量微位移,有许多物理量如力、压力、压差、加速度、振动、应变、流量、厚度、液位等常常需要先转换成位移量变化的参数,因此电感式微位移传感器是一类重要的基本传感器。因其应用相当广泛,本文就此传感器原理结构及其应用做介绍。关键字:正弦波振荡器 电感式微位移传感器 相敏检波电路一、传感器简述人们为了从外界获取信息,必须借助于感觉器官。 而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器
3、是人类五官的延长,又称之为电五官。新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。在基础学科研究中,传感器更具有突出的地位。现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到 fm的粒子世界,纵向上要观察长达数十万年的天体演化,短到 s的瞬间反应。此外
4、,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁场等等。显然,要获取大量人类感官无法直接获取的信息,没有相适应的传感器是不可能的。许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。一些传感器的发展,往往是一些边缘学科开发的先驱。传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一4个现代化项目
5、,都离不开各种各样的传感器。由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。二、电感式微位移传感器分类2.1自感式变压器:常用电感式传感器有变间隙型、变面积型和螺管插铁型。在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸力所造成的附加误差。变间隙型电感传感器:这种传感器的气隙 随被测量的变化而改变,从而改变磁阻。它的灵敏度和非线性都随气隙的增大而减小,因此常常要考虑两者兼顾。 一般取在 0.10.5 毫米之间。变面积型电感传感器:这种传感器的铁
6、芯和衔铁之间的相对覆盖面积(即磁通截面)随被测量的变化而改变,从而改变磁阻。它的灵敏度为常数,线性度也很好。线圈磁力线泄漏路径上磁阻的变化。衔铁随被测物体移动时改变了线圈的电感量。这种传感器的量程大,灵敏度低,结构简单,便于制作。测试电路:电感传感器测量线路主要采用交流电桥。交流电桥的固定桥臂可以是电阻、变压器的次级绕组或紧耦合的电感。需要指出的是,紧耦合电感电桥无论是在5灵敏度指标上还是在电桥的平衡上都更优越。 简单自感传感器的测量线路,该线路的输出量是电流。该线路在精密测量中存在如下一些缺点:线性工作范围窄;无输入时就存在起始电流,因此不能实现零输入时零输出的要求,且激磁电流产生的磁场使衔
7、铁产生附加位移将引起测量误差。将简单自感传感器的自感量转换成电的频率变化的设想是:将简单自感传感器与电容器构成一振荡器的线路,于是振荡器的振荡频率便是传感器自感量的函数。实现上述设想的典型线路,这是一个电容三点式振荡器。2.2互感式传感器:差动变压器:差动变压器指的是一种广泛用于电子技术和非电量检测中的变压器装置。主要用于测 量位移、压力、振动等非电量参量。它既可用于静态测量,也可用于动态测量。简介:一种广泛用于电子技术和非电量检测中的变压装置。用于测量位移、压力、振动等非电量参量。它既可用于静态测量,也可用于动态测量。6差动变压器的基本组成部分包括一个线框和一个铁心。在线框上设置一个原绕组和
8、两个对称的副绕组,铁心放在线框中央的圆柱形孔中。在原绕组中施加交流电压时,两个副绕组中就会产生感应电动势 e1和 e2。如果两个副绕组按反向串联(图1),则它的总输出电压 u2=u21u22 e1 e2。当铁心处在中央位置时,由于对称关系, e1=e2,输出电压 u2为零。如果铁心向右移动,则穿过副绕组 2的 磁通将比穿过副绕组1的磁通多,于是感应电动势 e2e1,差动变压器输出电压 u2不等于零,而且输出电压的大小与铁心位移 x之间基本成线性关系,其特性如图2所示,呈 V字形。用适当的测量电路测量,可以得到差动变压器输出与位移 x成比例的线性读数。最常用的测量电路是差动整流电路,它把两个次级
9、电压分别整流后,以它们的差作为输出。差动整流电路有电流输出型和电压输出型,前者用于连接低阻抗负载的场合;电压输出型差动整流电路则用于连接高阻抗负载的场合。应用:位移变送器由同心分布在线圈骨架上一初级线圈 P,二个级线圈 S1 和 S2 组成, 线圈组件内有一个可自由移动的杆装磁芯(铁芯) ,当铁芯在线圈内移动时,改变了空间的磁场分布,从而改变了初次级线圈之间的互感量 M,当初级线圈供给一定频率的交变电压时,次级线圈就产生了感应电动势, 随着铁芯的位置不同, 次级产生的感应电动势也不同, 这样, 就将铁芯的位移量变成了电压信号输出。保护装置变压器的差动保护是变压器的主保护,是按循环电流原理装设的
10、。 差动变7压器保护主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。 在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间并联接入电流继电浪。2.3电涡流传感器:电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。简介:在高速旋转机械和往复式运动机械的状态分析,振动研究、分析测量中,对非
11、接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心 转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。8原理:根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时(与金
12、属是否块状无关,且切割不变化的磁场时无涡流) ,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗) ,这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线
13、圈和金属导体系统的物理性质可由金属导体的电导率 、磁导率 、尺寸因子 、头部体线圈与金属导体表面的距离 D、9电流强度 I和频率 参数来描述。则线圈特征阻抗可用 Z=F(, , , D, I, )函数来表示。通常我们能做到控制 , , , I, 这几个参数在一定范围内不变,则线圈的特征阻抗 Z就成为距离 D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗 Z的变化,即头部体线圈与金属导体的距离 D的变化转化成电压或电流的变化。输出信号的大小随探头到被测体表面之间的间距而变化,电涡流传感器就是根据这一原理实
14、现对金属物体的位移、振动等参数的测量。过程:当被测金属与探头之间的距离发生变化时,探头中线圈的 Q值也发生变化,Q值的变化引起振荡电压幅度的变化,而这个随距离变化的振荡电压经过检波、滤波、线性补偿、放大归一处理转化成电压(电流)变化,最终完成机械位移(间隙)转换成电压(电流) 。由上所述,电涡流传感器工作系统中被测体可看作传感器系统的一半,即一个电涡流位移传感器的性能与被测体有关。电涡流传感器工作原理如图所示按照电涡流在导体内的贯穿情况,此传感器可分为高频反射式和低频透射式两类,但从基本工作原理上来说仍是相似的。电涡流式传感器最大的特点是能对位移、厚度、表面温度、速度、 应力、材料损伤等进行非接触式连续测量,另外还具有体积小,灵敏度高,频率响应宽等特点,应用极其广泛。应用: