一。狭义相对论的时空解及比较在狭义相对论中,两惯性系相对速度与和平行(1)()为坐标系的坐标,()为坐标系的坐标,令,所以变换矩阵为(2)如果;,相对速度不变,那么(3)比较与(4)(5)比较后知道(4)式=(5)式(6)二。时空观测的定义为了较方便地说清楚不同的观测结果与不同坐标中长度与时间的相互比较的关系,在字母顶部加3个指标,如:定义为:左边指标为观察目标所在的坐标系,中间指标为观察者选择的单位长度与时间所在的坐标系,右边指标为观察者观察时所在的坐标系。这样有:其中,和是固有时,与是固有长度。三。的推导在狭义相对论中有(6.1)那么,在什么条件下上式会是普适的呢?先来考察欧几里德几何。对观察者而言,在欧几里德几何中的二维空间的坐标中,观察到的单位长度,与在欧几里德几何中的二维空间坐标中,观察到的单位长度。观察者是无法在长度方面区别和的,即(7)这是欧几里德几何的观察者假设,也是符合经验的假设,以前从未被指出过。根据相对论,在四维时空坐标中,时空量表示为: