精选优质文档-倾情为你奉上90题突破高中数学圆锥曲线1.如图,已知直线L:的右焦点F,且交椭圆C于A、B两点,点A、B在直线上的射影依次为点D、E。(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;(2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由。(文)若为x轴上一点,求证:2.如图所示,已知圆定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足,点N的轨迹为曲线E。(1)求曲线E的方程;(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足的取值范围。APQFOxy3.设椭圆C:的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q, 且 求椭圆C的离心率;若过A、Q、F三点的圆恰好与直线l: 相切,求椭圆C的方程. 4.设椭圆的离心率为e= (1)椭圆的左、右焦点分别为F1、F2、A是椭圆上的一点