精选优质文档-倾情为你奉上分数阶微分方程第三讲 分数阶微分方程基本理论一、 分数阶微分方程的出现背景及研究现状1、出现背景分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到以下问题:(1) 需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假 设条件;(2) 因材料或外界条件的微小改变就需要构造新的模型;(3) 这些非线性模型无论是理论求解还是数值求解都非常繁琐。基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具