精选优质文档-倾情为你奉上多面体与球的内切和外接常见类型归纳在平常教学中,立体几何的多面体与球的位置关系,是培养学生的立体感,空间想象能力的好教材。可是学生在两个几何体的组合后,往往感到无从下手。针对这种情况,笔者把日常教学中有关这方面的习题加以总结和归类如下:一正四面体与球CBDAOSEF如图所示,设正四面体的棱长为a,r为内切球的半径,R为外接球的半径。则高SE=a,斜高SD=a,OE=r=SE-SO,又SD=BD,BD=SE-OE,则在 r=。R=SO=OB=特征分析:1 由于正四面体是一个中心对成图形,所以它的内切球与外接球的球心为同一个。2 R=3r. r= R=。此结论可以记忆。例题一。1、一个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为( )分析:借助结论,R=,所以S=4=3。2、球的内接正四面体又有一个内切球,则大球与小球的表面积之比是( )分析:借助R=3r,答案为9:1。二、特殊三棱锥与球SACOBO
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。