1、1目录第一章 概述 .2第二章 工程难点 .3第三章 关键技术节点结构设计处理 .4第四章 结论 .72第一章概述1.1 工程概况广州地铁三号线体育西路站位于广州市体育西路与天河南一路所在的“”字路口,埋置于体育西路道路正下方,穿越沿天河南一路行进的地铁一号线。体育西路现路面宽 26,规划路面宽 60,车站所处的地形较平坦,地面高程为 9.5710.61,车站两侧大部分为多层和高层建筑物。车站所在地段地下管线密集,钻孔揭露的岩层自上而下有:人工填土层( 4)、砂层( +3 )、冲-洪积土层( + 3)、河湖相沉积土层( 3)、残积土层( )、岩石全风化带、岩石强风化带、岩石中等风化带、岩石微风
2、化带。车站总平面图如图 1。1.2 一号线体育西路站结构现状一号线体育西路站主体结构于 1997 年 9 月竣工,车站设计为 13岛式站台、双层三跨结构。车站顶覆土约 1.8,底板埋深约 14。结构构件厚度为顶、底板 800、中板400、侧墙 700, 公共区中柱为900 的钢筋混凝土圆柱。该站采用全包防水,外侧围护结构为 1200的圆形人工挖孔桩,车站结构仅在站厅层西端南侧预留了与原规划轻轨换乘连接的条件,原设计中未考虑现三号线车站。1.3 两地下车站的相互关系3广州地铁三号线与地铁一号线在体育西路站形成立体交叉,三号线的地下三层车站结构穿越一号线的地下二层车站结构。当三号线穿越既有的地铁一
3、号线时,三号线主体结构的一部分将利用一号线既有的地下一、二层车站结构作为三号线的地下一、二层,而三号线的地下三层则从一号线两侧明挖的基坑中由一号线站台层下部土体中以暗挖隧道的方式穿过。两地下车站的相互关系如图 2 和图 3。第二章工程难点根据三号线车站与一号线车站的换乘要求,本站三号线与一号线在体育西路站采用站厅换乘方式,并将三号线和一号线车站的站厅连成整体。在三号线体育西路站设计和施工时,如何保证一号线体育西路站的正常运营和结构安全,成为有关各方关注的重点,也是本工程是否取得成功的关键。根据一号线车站的结构型式、受力特点和一号线车站底板下的地质情况,主要针对以下三种方案进行了综合研究(表 1
4、)。(1)方案一:为了最大限度地减小三号线车站的埋深,设计时将节点部分三号线的站台层顶板从一号线车站底板下紧贴底面通过,节点部分三号线结构采用矩形框架结构,施工时采用盖挖法通过。4(2)方案二:节点部分三号线结构设计和施工方案同方案一,但为了尽量减少节点部分三号线结构施工对一号线车站结构的影响,在节点三号线结构顶板和一号线车站底板之间保留一定厚度的土体,以便于对节点三号线结构采用超前长管棚支护,从而保护一号线底板,为施工创造有利条件。(3)方案三:由于前两个方案的节点部分三号线结构均采用矩形框架结构,其受力和变形均不十分有利,进而影响一号线车站结构的受力和变形。因此,方案三在方案二的基础上对节
5、点三号线结构形式进行了改进,即采用了拱型结构。从表 1 可以看出:方案三断面形式比其余两种断面形式在结构受力和减小地面及结构底板的下沉方面具有优势;夹土体的存在一方面可减少暗挖隧道开挖引起的一号线沉降,另一方面可以使一号线站台层的底板和三号线二次衬砌承受静水压力,抵消一部分站厅层和站台层的竖向荷载,同时对改善车站结构的受力状态有利。因此选用方案三作为实施方案,其节点结构设计处理也按照此方案进行。第三章关键技术节点结构设计处理3.1 主要设计思路及模型的确立5地铁三号线的地下三层车站结构穿越一号线的地下二层车站结构,一号线底板与三号线暗挖隧道衬砌外侧之间的夹土体厚度为 0.8,鉴于该车站节点所处
6、的特殊位置和工程特点,必须对车站的开挖过程进行计算和分析。开挖过程的模拟计算采用弹塑性三维有限元的地层与结构共同作用模型,其结构尺寸为:沿一号线纵向长为 88,沿三号线纵向长为 85,从地表到计算的下部边界为 40,总共划分有 15万个有限单元。在有限元模型当中,车站主体结构的顶板、中板、底板以及侧墙均采用壳体单元,车站建筑结构的立柱和纵梁均采用三维梁单元,车站周围的土体采用实体等参单元。三号线暗挖隧道的初期支护亦采用实体单元,二次衬砌和临时支护均采用三维壳体单元。结构计算时,依据该地段工程地质条件将地层划分为 6 层,有限元计算模型如图 4 所示。3.2 理论计算分析根椐地铁三号线穿越既有一
7、号线体育西路车站处节点处理的工序,对节点部分结构做了以下 5个工况的仿真计算。 工况 1:未施做三号线车站,一号线正常运营时车站结构的内力及变形情况,同时考虑地下静水压力对一号线结构的影响。6 工况 2:开挖一号线两侧的三号线车站基坑,并降低地下水位。分析降低地下水位对一号线车站结构的影响。 工况 3:节点段三号线暗挖隧道在开挖期间,按施工步骤分步开挖完土体、架设临时横撑和钢支撑、施作隧道初期支护对一号线车站结构的影响。 工况 4:施做节点段三号线暗挖隧道的二次衬砌,并逐步拆除临时支护。分析此时一号线车站结构的变形和内力。 工况 5:节点段三号线隧道衬砌完成后,破除一号线车站地下一层顶板与中板
8、之间的部分侧墙时,对一号线车站结构的影响。通过对体育西路站一、三号线车站节点处理的计算,得到的主体结构的变形和主要内力值见表2表 5。3.3 辅助工程措施通过对以上节点处理方案的三维有限元计算模型及结果的分析,并结合基本工法和本工程的特点,采取了以下辅助工程措施来确保一号线结构的安全和正常运营,并确保三号线车站施工的顺利进行。(1) 长管棚注浆加固:由于一号线底板与三号线暗挖隧道衬砌外侧之间存在厚度为 0.8的夹7土体,因此,施工前对夹土体进行长管棚注浆加固,以减小施工(爆破)对一号线结构的的震动影响以及一号线运营中列车制动时对三号线施工的影响。(2) 超前大管棚预支护:为有效地控制一号线车站
9、底板的沉降和变形,加大暗挖隧道的支护强度,设计中对隧道采用大管棚超前支护,并在大管棚中施做钢筋笼以加大管棚的刚度。(3) 加强初期支护:为减少对地表和一号线车站的沉降,加强了暗挖部分结构的初期支护。(4) 一号线车站底梁加固:在 5 种工况下,一号线车站顶板(梁)的受力满足其原有的承载能力,仅在施工过程中采取必要的工程措施便可保证施工安全;但一号线车站底梁承受的弯矩较大,该弯矩值已超过一号线车站底梁的承载能力,在施工前需对一号线车站底梁进行加固(加固措施可采用加型钢或在梁顶面贴片处理),以确保三号线施工和一号线正常运营的安全)。3.4 工程实施情况三号线体育西路站于 2003 年年初开工,目前
10、节点南、北两侧主体明挖基坑施工已完成,并开始浇筑车站中板及侧墙结构;节点处下穿一号线车站的三号线暗挖段车站隧道导洞开挖已完成15。车站隧道由于下半部围岩坚硬,受爆破震速限制,施工进展缓慢。根据施工监测反馈信息,一号线车站底板变形监测值在控制值之内,可保证施工安全。第四章结论8广州地铁三号线与地铁一号线在体育西路站形成立体交叉,经过分析论证,穿越一号线车站的三号线节点结构断面形式采用暗挖三连拱隧道,并在三号线车站站台层与一号线底板之间保持一定厚度的夹土层。采用这种结构形式和施工方案,无论从结构受力、结构变形或是对一号线结构的影响等方面均有一定的优势。上述 5 种工况分别代表体育西路车站节点在三号
11、线施工过程中的典型工况,模拟了暗挖隧道的开挖顺序,获得了主体结构的变形值和主要内力值。但由于节点的空间特性又使其变形和内力分析极为复杂,因此在设计中采用了有利于结构安全的辅助加强措施。在工程建设中,由于线网规划的不断调整及功能的需要,在原已建成线路上增设新节点车站成为必然的选择。在这种情况下,优化节点功能、确保既有车站及新建车站的安全非常重要。参考文献150208-2002 混凝土结构设计规范.北京:中国建筑工业出版社2铁道第二勘察设计院地下铁道设计研究院,西南交通大学.广州市轨道交通三号线工程体育西路站节点处理的三维有限元分析.2003-033铁道第二勘察设计院.广州市轨道交通三号线工程体育西路站初步设计.2002-064广州市地下铁道设计研究院.广州市轨道交通三号线工程初步设计.2002-069=说 明 星欣设计图库资料专卖店拥有最新最全的设计参考图库资料,内容涉及景观园林、建筑、规划、室内装修、建筑结构、暖通空调、给排水、电气设计、施工组织设计等各个领域的设计素材和设计图纸等参考学习资料。是为广大艺术设计工作者优质设计学习参考资料。本站所售的参考资料包括设计方案和施工图案例已达几十万套以上,总量在数千 G 以上。图库网址 http:/ftp:/ 联系 QQ:447255935电话:13111542600