精选优质文档-倾情为你奉上坐标系内三角形面积的求法 平面直角坐标系内三角形面积的计算问题,是一类常见题型,也是坐标系内多边形面积计算的基础,那么如何解决这类问题呢?一、三角形的一边在坐标轴上例1 如图1,三角形ABC的三个顶点的坐标分别是A(4,0),B(-2,0),C(2,4),求三角形ABC的面积.分析:要求三角形的面积,需要分别求出底边及其高.由图1可知,三角形ABC的边AB在x轴上,容易求得AB的长,而AB边上的高,恰好是C点到x轴的距离,也就是C点的纵坐标的绝对值.解:因为A(4,0),B(-2,0),所以AB=4-(-2)=6.因为C(2,4),所以C点到x轴的距离,即AB边上的高为4,所以三角形ABC的面积为.二、三角形有一边与坐标轴平行例1 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求