概率统计公式大全复习重点.doc

上传人:h**** 文档编号:770666 上传时间:2018-10-31 格式:DOC 页数:29 大小:968.50KB
下载 相关 举报
概率统计公式大全复习重点.doc_第1页
第1页 / 共29页
概率统计公式大全复习重点.doc_第2页
第2页 / 共29页
概率统计公式大全复习重点.doc_第3页
第3页 / 共29页
概率统计公式大全复习重点.doc_第4页
第4页 / 共29页
概率统计公式大全复习重点.doc_第5页
第5页 / 共29页
点击查看更多>>
资源描述

1、1第一章 随机事件和概率(1)排列组合公式从 m 个人中挑出 n 个人进行排列的可能数。)!(nPnm从 m 个人中挑出 n 个人进行组合的可能数。)!(Cn(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n种方法来完成,则这件事可由 m+n 种方法来完成。乘法原理(两个步骤分别不能完成这件事):mn某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n 种方法来完成,则这件事可由 mn 种方法来完成。(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验

2、和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:每进行一次试验,必须发生且只能发生这一组中的一个事件;任何事件,都是由这一组中的部分事件组成的。这样一组事件中的每一个事件称为基本事件,用 来表示。基本事件的全体,称为试验的样本空间,用 表示。一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母A, B, C, 表示事件,它们是 的子集。为必然事件,

3、 为不可能事件。不可能事件()的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件()的概率为 1,而概率为 1 的事件也不一定是必然事件。(6)事件的关系与运算关系:如果事件 A 的组成部分也是事件 B 的组成部分, ( A 发生必有事件 B 发生):B如果同时有 , ,则称事件 A 与事件 B 等价,或称 A 等于B: A=B。A、 B 中至少有一个发生的事件: A B,或者 A+B。属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表示为 A-AB 或者 ,它表示 A 发生而 B 不发生的事件。A、 B 同时发生: AB,或者 AB。A B=

4、,则表示 A 与 B 不可能同时发生,2称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。-A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A。它表示 A 不发生的事件。互斥未必对立。运算:结合率:A(BC)=(AB)C A(BC)=(AB)C分配率:(AB)C=(AC)(BC) (AB)C=(AC)(BC)德摩根率:1iiA,BBA(7)概率的公理化定义设 为样本空间, 为事件,对每一个事件 都有一个实数 P(A),若满足下列三个条件:1 0P(A)1, 2 P() =13 对于两两互不相容的事件 1A, 2,有11)(iiiP常称为可列(完全)可加性。则称 P(A)为

5、事件 的概率。(8)古典概型1 ,n21,2 。PPn)()()设任一事件 A,它是由 组成的,则有m21,P(A)= =21 )()(21mPnm基 本 事 件 总 数所 包 含 的 基 本 事 件 数(9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件 A,。其中 L 为几何度量(长度、面积、体积) 。)(P(10)加法公式P(A+B)=P(A)+P(B)-P(AB)当 P(AB)0 时,P(A+B)=P(A)+P(B)(11)减法公式P(A-B)=P(A)-P(AB)当 B

6、A 时,P(A-B)=P(A)-P(B)当 A= 时,P( )=1- P(B)(12)条件概率定义 设 A、B 是两个事件,且 P(A)0,则称 为事件 A 发生条件下,事)(PB件 B 发生的条件概率,记为 。)/(ABP条件概率是概率的一种,所有概率的性质都适合于条件概率。3例如 P(/B)=1 P( /A)=1-P(B/A)B(13)乘法公式乘法公式: )/()(APA更一般地,对事件 A1,A 2,A n,若 P(A1A2An-1)0,则有21P n )|(|32 21|(APn )1n。(14)独立性两个事件的独立性设事件 、 B满足 )()(B,则称事件 、 B是相互独立的。若事件

7、 A、 相互独立,且 0AP,则有 )()()(|(P若事件 、 B相互独立,则可得到 与 B、 与 、 A与 B也都相互独立。必然事件 和不可能事件 与任何事件都相互独立。 与任何事件都互斥。多个事件的独立性设 ABC 是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同时满足 P(ABC)=P(A)P(B)P(C)那么 A、B、C 相互独立。对于 n 个事件类似。(15)全概公式设事件 n,21 满足1 两两互不相容, ),21(0)niBPi,2ni1,则有 )|()|()|()( 221 nnBAPAAPB。

8、(16)贝叶斯公式设事件 1, 2, n及 满足1 , , 两两互不相容, (i0, 1,2, ,2 ni1, 0)(,则,i=1,2,n。nj jjiii BAPABP1)/()/(此公式即为贝叶斯公式。, ( i, 2, ) ,通常叫先验概率。)(i, ( , , n) ,通常称为后验概率。贝叶斯公式反映了“因/果”的概率规律,并作出了“由果朔因”的推断。(17)伯努利概型我们作了 n次试验,且满足 每次试验只有两种可能结果, A发生或 不发生; 次试验是重复进行的,即 发生的概率每次均一样; 每次试验是独立的,即每次试验 发生与否与其他次试验 A发生与否是互不影响的。4这种试验称为伯努利

9、概型,或称为 n重伯努利试验。用 p表示每次试验 A发生的概率,则 A发生的概率为 qp1,用 )(kPn表示n重伯努利试验中 出现 )0(k次的概率,knkqpPC)(, n,21。第二章 随机变量及其分布(1)离散型随机变量的分布律设离散型随机变量 X的可能取值为 Xk(k=1,2,)且取各个值的概率,即事件(X=Xk)的概率为P(X=xk)=pk,k=1,2,,则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出: ,|)(21kkpxxXP。显然分布律应满足下列条件:(1) 0kp, ,, (2)1kp。(2)连续型随机变量的分布密度设 )(xF是随机变量 X的分布函

10、数,若存在非负函数 )(xf,对任意实数 x,有 df, 则称 为连续型随机变量。 )(xf称为 X的概率密度函数或密度函数,简称概率密度。密度函数具有下面 4 个性质:1 0)(xf。2 1d。(3)离散与连续型随机变量的关系dxfxXPx)()( 积分元 在连续型随机变量理论中所起的作用与 kpxXP)(在离f散型随机变量理论中所起的作用相类似。5(4)分布函数设 为随机变量, 是任意实数,则函数Xx)()PxF称为随机变量 X 的分布函数,本质上是一个累积函数。可以得到 X 落入区间 的概率。分布)()(aFba ,(ba函数 表示随机变量落入区间( ,x内的概率。xF分布函数具有如下性

11、质:1 ;,1)(0x2 是单调不减的函数,即 时,有 ;x21)(1xF23 , ;0)(lim)(xFx lim)(x4 ,即 是右连续的;05 。)0()(xxXP对于离散型随机变量, ;xkpF对于连续型随机变量, 。df)()(0-1 分布 P(X=1)=p, P(X=0)=q(5)八大分布二项分布 在 重贝努里试验中,设事件 发生的概率为 。事件 发生nApA的次数是随机变量,设为 ,则 可能取值为 。Xn,210, 其中knknqpCPkX)(,pq,210,0,1则称随机变量 服从参数为 , 的二项分布。记为。),(nB当 时, , ,这就是(0-1)分1kqpXP1).0布,

12、所以(0-1)分布是二项分布的特例。6泊松分布 设随机变量 的分布律为X, , ,ekP!)(02,1k则称随机变量 服从参数为 的泊松分布,记为 或)(X者 P( )。泊松分布为二项分布的极限分布(np=,n) 。超几何分布 ),min(210,)( MllkCkXPnNkM随机变量 X 服从参数为 n,N,M 的超几何分布,记为 H(n,N,M)。几何分布 ,其中 p0,q=1-p。,321,)(pqk随机变量 X 服从参数为 p 的几何分布,记为 G(p)。均匀分布 设随机变量 的值只落在a,b内,其密度函数 )(xf在a,b上为常数 ,即ab其他,,01)(xf则称随机变量 X在a,b上服从均匀分布,记为 XU(a,b)。分布函数为xdfF)()(当 ax 1b。axb7指数分布其中 0,则称随机变量 X 服从参数为 的指数分布。X 的分布函数为记住积分公式: !0ndxen)(xf,xe 0,0, ,)(xF,1xe0,0xx1时,有 F(x 2,y)F(x 1,y);当 y2y1时,有 F(x,y2) F(x,y 1);(3)F(x,y)分别对 x 和 y 是右连续的,即 ;0,(),(,0(),( yxF(4) .1),( x(5)对于 , 2121yx.0)()()()( 1212 yxFxFy ,(4)离散型与连续型的关系dxyfdYdXPYxXP )(,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 参考答案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。