1、 外文翻译 原文 Modelization of Time-Dependent Urban Freight Problems by Using a Multiple Number of Distribution Centers Material Source: Netw Spat Econ Author: David Escun Carlos As time goes on and because of population increase in large cities, the problems generated by urban freight distribution are ge
2、tting more and more complicated due to traffic flow, traffic congestion, illegal parking, just-in-time delivery, time constraints, e-commerce and, above all, pollution and environmental impact. Although the literature on solving routing and scheduling problems is very extensive nowadays, almost no m
3、odels exist that take hubs into account, and so, from the point of view of research, it is still necessary to find ways of resolving the negative effects caused by the above-mentioned points, through an analysis of new delivery strategies and algorithms. The aim of the paper is to model urban distri
4、bution vehicle routing problems by means of hubs in large cities. Hubs are very well known in the literature; they are often used in many scheduling problems and strategy models, like air traffic models, logistic models, etc. Over the last few years, new distribution centers (called Urban Distributi
5、on Centers, U D Cs or D Cs) have appeared within the cities. Finnegan et al. (2005), present a study evaluating sustainable freight distribution in the city center of Dublin, focusing particularly on urban distribution centers and managing the last mile delivery. The idea behind the urban distributi
6、on center is to provide buffer points where cargo and packages which are to be delivered to shops and businesses, can be stored beforehand. At these centers, there will be other kinds of routing problems corresponding to a fairly similar distribution problem. One of the main objectives of these cent
7、ers is related to reducing traffic congestion (caused by the large number of delivery trucks on the streets and because it is not possible to create enough parking places), in zones where problems such as illegal parking lead to reductions in traffic flow. As shops and businesses demand shorter and
8、shorter delivery times, vehicle routing and scheduling problems become harder for distributors. It is recognized that the traditional system based on fixed routes does not fulfils the expectations of trade and may, in some cases, be quite inefficient for distributors. In this work, a new vehicle rou
9、ting model (based on the known Time-Dependent Vehicle Routing Problem with Time Windows, TDVRPTW, Huey-Kuo et al. 2006) has been developed and a change in the traditional approach is proposed, by adopting a system in which some customers are served by urban distribution centers (to be more specific,
10、 by using, for example, hybrid vehicles) while the remaining customers are served by traditional routes. This study is also motivated by recent developments in real time traffic data acquisition systems, as well as national and international policies aimed at reducing concentrations of greenhouse ga
11、ses in the atmosphere emitted by traditional vans. Due to the fact that the density of shops differs greatly in central districts of a city compared to the outskirts, not all shops are serviced by routes starting at the hub. For this reason, it is suggested that the DCs be located in areas where the
12、re is a high density of shops and that in other areas, deliveries be made directly through conventional distribution methods (Fig. 1). The method used consists of extending the traditional VRPTW by giving further consideration to total delivery costs and the influence of arrival times at each DC. Th
13、e paper is organized as follows: after this introductory section; a review of time dependent models is presented in the next section; then the model formulation is introduced in two parts a problem description and a mathematical model. After introducing the model, which is the focus of this paper, t
14、he solution algorithm is presented once the concept of latest possible departure time is explained in detail. The general scheme of the solution procedure is shown as well. At the end of this paper, in section 5, a case study involving a pharmaceutical distribution is presented to show the method an
15、d computational results. Finally, several findings and future work are discussed. Before proceeding to the description of the new model, some brief general concepts of Time Dependent Vehicle Routing Problems (TDVRP) are introduced. It is not necessary to explain the VRP models because they have been
16、 largely studied. The Time Dependent Vehicle Routing Problem (TDVRP), another variant of the classic Vehicle Routing Problem, consists of optimally routing a fleet of vehicles of fixed capacity when travel times are time dependent, in the sense that the time employed to travel each given arc depends
17、 on the time of day that the travel starts from its originating node. It is motivated by the fact that in urban contexts, variable traffic conditions play an essential role and cannot be ignored if a realistic optimization is to be achieved. An optimization method consists in scheduling, planning an
18、d finding solutions that minimize three hierarchical objectives: number of routes, total travel time and cost. Mitrovi-Mini et al. (2004) proposes the use of a rolling time horizon for the standard solution methodology for the dynamic PDPTW. When assigning a new request to a vehicle, it may be prefe
19、rable to consider the impact of a decision on both a short and a long-term horizon. This way, in particular, better managing of slack time in the distant future may help reduce routing costs. On the other hand, Hashimoto et al. (2007), uses a local search to determine the routes of the vehicles. Whe
20、n evaluating a neighborhoods solution, they compute an optimal time schedule for each route. This sub-problem can be efficiently solved by dynamic programming, which is incorporated into the local search algorithm. The neighborhood of the local search contains slight modifications of the standard ne
21、ighborhoods called 2-opt, Cross Exchange and Or-opt. The final aim is an algorithm that evaluates solutions in these neighborhoods more efficiently than those that compute the dynamic programming from scratch, as these utilize information from past dynamic programming recursions in order to evaluate
22、 the current solution. Another recent work can be found in Donati et al. (2008) wherein the time space in a suitable number of subspaces is discredited with a multi-ant colony system. Regarding urban environment, Friesz et al. (2008) discusses a model of dynamic pricing of freight services that foll
23、ows the paradigm set in the field of revenue management for nonlinear pricing in a dynamic, game theoretic setting. They propose three main entities: sellers, transporters and receivers. Each competing agents extremely problem is formulated as an optimal control problem and the set of these coupled
24、optimal control problems is transformed into a differential variation inequality representing the general Nash equilibrium problem. Ando and Taniguchi (2006) presents a model for minimizing the total costs incorporating the uncertainty of link travel times with the early arrival and delay penalty at
25、 customers who set up designated time windows. This paper presents calibration of the Vehicle Routing and scheduling Problems with Time Windows- Probabilistic. Casceta and Coppola (2003) review and classify models according to basic assumptions on the flow structure. Regarding locations of DCs, Silv
26、a and Serra (2007) propose a met heuristic to solve a new version of the Maximum Capture Problem. The Max Cap problem seeks the location of a fixed number of stores belonging to a firm in a spatial market where there are other stores belonging to other firms already competing for clients. Yam is et
27、al. (2003) present a simple simulation of road growing dynamics that can generate global features as belt-ways and star patterns observed in urban transportation infrastructure. Hsu et al. (2007) carries out a study focused on determining the optimal delivery routing, loads and departure times of ve
28、hicles, as well as the number of vehicles required for delivering perishable food to many customers from a DC. Features related to delivery of perishable food were considered, such as the time-window constraints of customers and the stochastic characteristics of travel time and food preservation. Ti
29、me-dependent temperatures, travel time and soft time-windows with penalty costs were further discussed, and modifications were accordingly made to both the objective functions and the constraints in the mathematical programming models. Regarding scheduling, one important aspect of this type of probl
30、em (Mitrovi-Mini and Laporte 2004) lies in analyzing two simple waiting strategies, Drive-First (DF a vehicle leaves its current location immediately), and Wait-First (WF a vehicle waits at its current location for as long as is feasible). The other two strategies introduced are Dynamic Waiting (DW
31、the vehicle drives as soon as is feasible while serving close locations; when all such locations are served, then the vehicle has to serve the next furthest location) and Advanced Dynamic Waiting (ADW propagate the total waiting time available on the route along the entire route), which are combinat
32、ions of the two simple strategies. Solving a problem modeled as a VRPTW deals with calculating a solution based on a set of routes and a scheduling of the same; therefore, one only has to solve a single problem. However, by using k DCs, the whole problem is now comprised of k+1 problem: one special
33、VRPTW in each DC besides the main problem in which some customers and k DCs are serviced Each special VRPTW involves a subset of customers which are serviced by vehicles (these may be hybrid vehicles) starting from the DC. From now on, the routes and vehicles starting from the depot and the routes a
34、nd vehicles starting from the DCs, will be identified by first and second level routes and vehicles respectively. These two important remarks need to be discussed in more detail, as follows: (a) From the point of view of the dispatching center at the depot, each DC is considered in the light of anot
35、her customer, with demands of its own in addition to the demands of its associated customers. However, its time window is not a trivial issue as will be explained later. Therefore, apart from a reduction in the number of locations/customers, the original problem has yet another variant with respect
36、to the original problem: the DC costs must be taken into account and added to the original costs. (b) Once the first level vehicles have serviced demand for one DC, the second level vehicle can already be loaded and, thereafter, can depart. At this point, note that the information data of the custom
37、ers never changes and hence delivery is transparent for the customers associated with the DC; that is to say, these customers do not need to know whether the second level vehicles left from the depot or from the DC. 译文 用多个配送中心来建立城市配送模型解决配送问题 资料来源 : Netw Spat 经济周刊 作者:大卫 伊苏卡隆 随 着时间的推移,由于城市人口的大量增加,由市区货
38、物配送所产生的问题也越来越复杂,其原因可归结于交通事故,交通堵塞,非法泊车,准时交货,时间的限制,电子商务,其中最重要的是污染现象对于环境的影响。虽然如今关于解决线路和调度问题的文献是非常全面的,但是几乎没有任何成型的模式存在,考虑到其关键性,从研究的角度来看,它仍然需要寻找合适的方法来解决上述问题所造成的负面影响,通过运用一个新的策略和方法进行分析。 本文的目的是在大城市中模拟城市配送车辆行驶线路。集线器是一本非常有名的文献,它往往应用在许多调度问题和战略 模式方面,如空气流量模型,物流模型等,在过去的几年里,新的配送中心(称为城市配送中心, U DCs 或DCs)已经出现在城市中。芬尼根等
39、人 ( 2005 年 ),在都柏林市中心实施了一项有关可持续货物配送的研究,尤其关注城市配送中心和最后一公里交付的管理 。 建立城市配送中心的目的是提供货物和货物包装存放的缓冲区,这是货物在被传递到商店和企业前,可以进行预先储存的地方。在这些配送中心,将会出现类似于相应的路线分布的问题。 这些配送中心的主要目标之一是减少交通拥堵(都是由于街上的货车过多,因为它不可能产生足够的停车位),在 配送区域内的问题,例如非法泊车导致交通流量减少。由于商店和企业要求的交货时间越来越短,物流配送车辆的调度成为了分销商迫切需要解决的问题。人们认识到,传统体制下的固定配送路线已经不能满足贸易的期望,因为在某些情
40、况下,分销商是非常低效的。 在这项工作中,新的车辆路 线 模型(基于已知的时间依赖型车辆路线问题的时间 表 , TDVRPTW,休伊阔等。 2006 年)已经制定,并 且 在传统方法 上进行了 改变,提出采用 统一的 系统, 由 城市配送中心 为 其中一些客户 提供 服务(更丰富的的服务项目, 例如,混合动力汽车),而剩下的客户是由传统路线 提 供服务。这项研究是 根据 实时交通数据采集系统 所开展出来的 , 其目的和 国家 与国际政策 的一样, 在 于 降低大气中排放的温室气体浓度 。 由于商店 在 城市中心区 与 郊区 的分布密度差别是很大的 , 因此 并不是所有的商店都 能 通过 配送中
41、心来 提供服务。出于这个原因 ,配送中心应该 设在一个商店和 人口 高度 集中的区域 ,通过传统交付作出直接分配 。 采用的方法 应该进一步考虑 延长传统 VRPTW 模型对于 总交付成本和到达时间在每个 区域内 的影响。 本文结构如下:在 该段 介绍 后面 , 将会介绍 一个时间依赖模型,然后 将 模型的制定分为两部分, 分别是 数学模型 的 描述和介绍。在介绍了 这个 模型 后将是本文的重点 既 解决算法,解释 了何为最快 出发时间。该解决方案的过程总体显示为良好。本文 的 最后 部分,即 案 例 研究,涉及 到 药品 徐徐求量的 分布情况,以 及相关的计算 方法和计算结果。最后,讨论 了
42、 一些研究结果和未来 所需要做的 工作。 在描述新的模型 之前 ,简要介绍 一下 时间依 赖型 车辆 关于 路径问题 的( TDVRP)一般概念。这是 一个 没有必要 进行 解释的 VRP 模型,因为 它 已经 被广泛应用了 。 时间 依赖型 的车辆路径问题( TDVRP), 是 另一 种 经典的车辆路径问题的变型 , 包括在固定时间内制定最佳配送路线的问题 ,车 队在一天时间 内 ,从它 的始发地出发 。事实 上 ,在城市环境中, 可 变交通条件发挥 着 重要 的 作用,如果要实现优化 ,这是我们 不能忽视 的方面 。一种 合理的 优化方法包括安排,规划和寻找解决办法, 其目的在于 最大限度
43、地减少三个层次目标:路线,总行程时间和成本数。 米特罗维奇 -铭尼科等 ( 2004 年)提出了一个 关于 解决滚动时间跨度为标准的动态 PDPTW 的 方法 。 当 人们被 分配 到 一辆 新 车 时 , 优先考虑决策思维对于短期或者长期投入的影响 。这样一来, 能够 更好地管理 分散 时间 段便 于降低路线 成本。 另一方面,桥本龙太郎等 ( 2007 年),使用本地 搜索来确定车辆的 行驶 路线。 在评估一个配送中心的解决方案时,他们计算出了各条路线的最佳时间。在 局部搜索算法中 , 这个 方案 可以有效地解决动态规划 ,其本质就 是一种计算方法。一 些 配送中心的 解决方案比那些从头计
44、算动态规划 的 计算结果更有效,因为这些利用动态规划 传 递过去的资料, 只能 评估 当 前的解决方案。 针对城市环境 的相关问题研究 , 有弗雷兹 等 人 ( 2008 年) 他们 讨论了 关于 货运服务的动态定价模式,以 及 非线性定价的税收管理领域的动态, 以及管理 理论设定的模式。 他们提出三个主要实体:销售,运输和 配送 。 安东 和谷口( 2006)列 出 了关于过程 时间和延误惩罚 相结合 的时间 表,这样能减少 客户 在建立 链接模型 时的 总成本。本文介绍的时间 安排表 , 将指明 物流配送车辆调度问题。 卡斯塔 和科波拉( 2003 年)审查和分类模型, 其依据是来源于 对
45、流动结构的基本假设。席尔瓦和塞拉( 2007)提出了 一个用来 解决最大 补货量 问题的 方法。 马克斯 提出的 第一个问题 是 ,在一 定区域内 寻求一个属于 本 公司 的固定市场 , 同时也存在 属于 竞争 公司 的 商店。 也木 ( 2003 年)提出了一个 促使配送线路流畅性的 简单 模型 ,可以 以传送链 的方式和全球 定位 模式在城市交通基础设施 上设立观察功能。 汇 苏 等人 ( 2007 年)进行了关于确定最优配送路线,装载和起飞时的车辆安排 ,以及用于从 运送中心到 众多客户 之间进行 易腐食品运送 的 车辆数目的 安排 的研究。 对 有关易腐食品运输的特点进行了审议,如顾客
46、 对于配送时间 和食品保鲜的随机 性限制等 。 针对 时间相关 性 , 配送 时间和 缓冲 时间 表 与处罚成本 ,本文将会作出 进一步讨论,并作出相应的修改, 包括 目标函数和数学规划模型的 的建立 。 关于调度,此类型的问题(米特罗维奇 -铭尼科和拉波特 2004 年)的一个重 点 在 于对 等待 时间的分析 , 第一是开车等待 ( 开车等待时间 汽车 快速地远 离了 其当前 的位 置 ), 第一等待 ( 第一等待 一 车辆 尽可能的 等待,只要是 允许 的)在其当前位置。 另外两个战略引入 了 动态等待(德国之声车辆驱动器, 尽可能快速地到达目的地 ,当所有这些地点 都 送 到时 ,则
47、陪送 车辆必须 为 最远的 供应点提供 服务),高级动态等待( adw 亚型, 总 的 等待时间 将伴随着 整个路线 的变化进行调整 ),这是两个简单 可行 的策略组合。 相对应的 解决问题 的 模 型是 一个 原本 为 了 解决 VRPTW 问题的 实施 方案,因此,一个人只需要解决一个问题。但是, 在 使用 K 区 配送中心时 , 整个 问题 完全 是由 k 个问题 组成 :在每个 配送中心中一个应用 VRPTW 的 解决方案能够为 一些客户和 K 区 配送中心进行相关 服务 。 在 各 个有关 VRPTW 的 问题 中 涉及的 为 客户提供服务的车辆(这些可能是混合动力汽车) 将 从 配
48、送中心出发 。从现在开始,从仓库 出发的 路线和车辆 将 由配送中心开始 , 并且还会 确定第一 级 和第二级的车辆 以及相应路线的分配 。这两个 内容 ,需要 进行 更 深入的探讨 , 具体 内容如下: (一)从车厂的调度中心的角度来看,每个 配送中心 会被认为是另一 个 客户,除了 完成相应 客户的需求 以外还要完成 自己的 配送任务目标 。然而,其 中的任务调度并 不是一个简单的问题,稍后会解释。因此,除了 在 配送 点 以及 客户数量的减少 方面 , 现 有的问题 任 就 是 原来的问题另一种变 型 : 所以配送中心的成 本必 须 添加到原来的成本 中 。 (二) 当第 一级车辆 已经接受了配送中心的 服务需求 时 ,第二级车 辆就应该 被 投入使用 , 而同时第一级车辆将驶离仓库 。在这一点 原则 上 是 永远不会改变 的 ,因 为 客户提供的信息数据 对于 与 配送中心有业务来往 的客户 来说是 透明的,这 也 就是说,这些客户并不需要知道第二个层次 的车辆是 从仓库 还是配送中心出发的。