精选优质文档-倾情为你奉上关于求函数最小值的十种解法一、 均值不等式,当且仅当,即的时候不等式取到“=”。当的时候,二、法若的最小值存在,则必需存在,即或(舍)找到使时,存在相应的即可。通过观察当的时候,三、单调性定义设当对于任意的,只有时,此时单调递增;当对于任意的,只有时,此时单调递减。当取到最小值,四、复合函数的单调性在单调递增,在单调递减;在单调递增又 原函数在上单调递减;在上单调递增即当取到最小值,五、求一阶导当时,函数单调递减;当时,函数单调递增。当取到最小值,六、三角代换令,则当,即时,显然此时七、向量, 根据图象,为起点在原点,终点在图象上的一个向量,的几何意义为在上的投影,显然当时,取得最小值。此时,八、图象相减,即表示函数和两者之间的距离求,即为求两曲线竖直距离的最小值平移直线,显然当与相切时,两曲线竖直距离最小。关于直线轴对称,若与在处有一交点,根据对称性,在处也必有一个交点,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。