精选优质文档-倾情为你奉上椭圆知识清单1.椭圆的两种定义:平面内与两定点F1,F2的距离的和等于定长的动点P的轨迹,即点集M=P| |PF1|+|PF2|=2a,2a|F1F2|;(时为线段,无轨迹)。其中两定点F1,F2叫焦点,定点间的距离叫焦距。平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M=P| ,0e1的常数。(为抛物线;为双曲线)(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化,定点为焦点,定直线为准线).2 标准方程:(1)焦点在x轴上,中心在原点:(ab0);焦点F1(c,0), F2(c,0)。其中(一个三角形)(2)焦点在y轴上,中心在原点:(ab0);焦点F1(0,c),F2(0,c)。其中注意:在两种标准方程中,总有ab0,并且椭圆的焦点总在长轴上;两种标准方程可用一般形式表示:Ax2+By2=1 (A0,B0,AB),当AB时,椭圆的焦点在x轴上,AB时焦点在y轴上。3 参数方程:焦点在x轴, (为