精选优质文档-倾情为你奉上 第四讲 奇偶性知识点及经典例题一、函数奇偶性的概念:设函数的定义域为,如果对内的任意一个,都有,且,则这个函数叫奇函数。(如果已知函数是奇函数,当函数的定义域中有0时,我们可以得出)设函数的定义域为,如果对内的任意一个,都有,若,则这个函数叫偶函数。 从定义我们可以看出,讨论一个函数的奇、偶性应先对函数的定义域进行判断,看其定义域是否关于原点对称。也就是说当在其定义域内时,也应在其定义域内有意义。 图像特征如果一个函数是奇函数这个函数的图象关于坐标原点对称。如果一个函数是偶函数这个函数的图象关于轴对称。复合函数的奇偶性:同偶异奇 对概念的理解:(a)必要条件:定义域关于原点成中心对称。(b)与的关系: 当或或时为偶函数; 当或或时为奇函数。二、函数的奇偶性与图象间的关系: 偶函数的图象关于轴成轴对称,反之也成立; 奇函数的图象关于原点成中心对称,反之也成立。
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。