22设的内角所对的边长分别为,且()求的值;()求的最大值解析:()在中,由正弦定理及可得即,则;()由得当且仅当时,等号成立,故当时,的最大值为.23.在中, ()求的值;()设的面积,求的长解:()由,得,由,得所以5分()由得,由()知,故,8分又,故,所以10分24.已知函数()的最小正周期为()求的值;()求函数在区间上的取值范围解:()因为函数的最小正周期为,且,所以,解得()由()得因为,所以,所以,因此,即的取值范围为25.求函数的最大值与最小值。【解】:由于函数在中的最大值为 最小值为 故当时取得最大值,当时取得最小值26.知函数()的最小值正周期是()求的值;()求函数的最大值,并且求使取得最大值的的集合(17)本小题主要考查特殊角三角函数值、两角和的正弦、二倍角的正弦与余弦、函数的性质等基础
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。