三角形“四心”优美的向量统一形式三角形“四心”的向量的统一形式:x是abc的心xa+xb+xc=0其中,重心的充要条件最简单,也容易证明。而内心、外心、重心的证明则比较困难,受此启发,笔者联想到既然有统一的结构,是否可以借用重心的充要条件证明其它“三心”的情况呢?因为要借用重心的向量形式来证明,所以还要给出重心的另一性质:g为abc的重心的充要条件是s=gab=sgbc=sgca= sabc.(图1)一、重心(中线交点)1.g是abc的重心ga+gb+gc=0证明:设g是abc的重心,如图2,延长ag交bc于点d.因为g为abc的重心,所以d为bc的中点,有gd= (gb+gc)且ga=-2gd因此ga+gb+gd+gc=0,反之亦成立.2.设p是abc所在平面内任意一点,则pg= (pa+pb+pc)g为abc的重心证明:g是abc的重心ga+gb+gc=0 gp+ap+gp+pb+gp+pc=0 3pg=pa+pb+pc pg= (pa+pb+pc)二、内心(内角平分线交点,内切圆圆心)1.i是abc的内心