三角形的“四心”与向量的完美结合三角形重心、垂心、外心、内心向量形式的充要条件的向量形式一 知识点总结1)O是的重心;若O是的重心,则故;为的重心.2)O是的垂心;若O是(非直角三角形)的垂心,则3)O是的外心(或)若O是的外心则4)O是内心的充要条件是引进单位向量,使条件变得更简洁。如果记的单位向量为,则刚才O是内心的充要条件可以写成 O是内心的充要条件也可以是若O是的内心,则的内心;向量所在直线过的内心(是的角平分线所在直线);二 范例(一)将平面向量与三角形内心结合考查ACBCCP例1O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足,则P点的轨迹一定通过的( )(A)外心(B)内心(C)重心(D)垂心解析:因为是向量的单位向量设与方向上的单位向量分别为, 又,则原式可化为,由菱形的基本性质知AP平分,那么在中,AP平分,则知选B.点评:这道题给人的印象当然是“新颖、陌生”,首先是什么?没见过!想想,一个非零向量除以它
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。