利用放缩法证明数列型不等式一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。裂项放缩法主要有两种类型:(1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。例1设数列的前项的和,。设,证明:。点评: 关键是将裂项成,然后再求和,即可达到目标。(2)先放缩通项,然后将其裂成项之和,然后再结合其余条件进行二次放缩。例2 已知数列和满足,数列的前和为,; (I)求证:; (II)求证:当时,。点评:此题(II)充分利用(I)的结论,递增,将裂成的和,从而找到了解题的突破口。2、迭乘放缩法:放缩法与迭乘法的结合,用放缩法构造迭乘形式,相乘时消去中间项。用于解决积式问题。例3 已知数列的首项为点在直线上。若证明对任意的 ,不等式恒成立点评:此题是证明积式大于根式,由于左边没有根式,右边是三次根式,立方后比较更容易处理。可以看成是三个
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。