专题三--求椭圆及双曲线的离心率-的方法(总5页).doc

上传人:晟*** 文档编号:7799964 上传时间:2021-11-13 格式:DOC 页数:5 大小:407KB
下载 相关 举报
专题三--求椭圆及双曲线的离心率-的方法(总5页).doc_第1页
第1页 / 共5页
专题三--求椭圆及双曲线的离心率-的方法(总5页).doc_第2页
第2页 / 共5页
专题三--求椭圆及双曲线的离心率-的方法(总5页).doc_第3页
第3页 / 共5页
专题三--求椭圆及双曲线的离心率-的方法(总5页).doc_第4页
第4页 / 共5页
专题三--求椭圆及双曲线的离心率-的方法(总5页).doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

求圆锥曲线离心率的专题求离心率问题有三种思路,一是求出三个量中的任何两个,然后利用离心率的计算公式求解;二是求出或或之间关系,然后利用离心率的计算公式求解;三是构造出关于离心率的方程来求解.此题中关键是灵活的应用椭圆和双曲线的定义构造出方程即可求解,一般是依据题设寻求一个关于的等量关系,再利用的关系消去,得到关于的等式,再转化为关于离心率的方程,解方程求出的值,最后根据椭圆或双曲线的离心率的取值范围,给出离心率的值.1.(2016全国丙卷理11)已知为坐标原点,是椭圆 的左焦点,分别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为( ).A. B. C. D. 2.已知双曲线,若矩形的四个顶点在上,的中点为的两个焦点,且,则的离心率是_.【解析】 由题意,又因为,则,于是点在双曲线上,代入方程,得,再由得的离心率为.考点1.利用题设条件求出的值【例1】已知双曲线,过其右焦点作圆的两条切线,切点记作,,双曲线的右顶点为,,其双曲线

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 表格模板

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。