专题:不等式恒成立、能成立、恰成立问题分析及应用恒成立,也就是一个代数式在某一个给定的范围内总是成立的,例如:x0,在实数范围既xR内恒成立能成立,也就是一个代数式在某一个给定的范围内存在值使这个代数式成立,使代数式成立的值有可能是一个,两个或是无穷多个,即个数是不定的,而在这个给定的范围内可以存在使这个代数式不成立的值,也可以不存在这样的值,例如:x+10在x-2上能成立.恰成立,也就是一个代数式在某一个给定的范围内恰好是成立的,或是说这个代数式只有在这个范围内成立,在这个范围外的值都不能使这个代数式成立,而这个代数式里面的值均能使这个代数式成立.例如:(x-1)=0,在x=1时恰成立.可以说恰成立时恒成立的一种特例,在给定的范围内恰成立肯定是恒成立的,但是恒成立的条件中还有可能符合代数式的在给定的范围之外,即恒成立不一定包含了满足这个代数式的所有的值,但是恰成立包含了满足这个代数的值,并且给定的范围也全都满足这个代数式.例如:x+10在x-5上是能成立的,在x-1上是恰成立也是恒成立的.而在-1x9上是恒成立但不是恰成立.常见关键词列表