精选优质文档-倾情为你奉上第四节 隐函数及由参数方程确定的函数的导数 相关变化率教学目的: 熟悉隐函数的概念;掌握隐函数的求导法则;掌握由参数方程所确定的函数的求导方法.教学重点:隐函数的导数;由参数方程所确定的函数的导;相关变化率;对数求导法 教学难点:隐函数和参数方程确定的函数的二阶导数的求法,幂指函数的求导法教学内容: 一、隐函数的导数 显函数: 形如y=f(x)的函数称为显函数. 例如y=sin x , y=ln x+e x . 隐函数: 由方程F(x, y)=0所确定的函数称为隐函数. 例如, 方程x+y3 -1=0确定的隐函数为y . 如果在方程F(x, y)=0中, 当x取某区间内的任一值时, 相应地总有满足这方程的唯一的y 值存在, 那么就说方程F(x, y)=0在该区间内确定了一个隐函数. 把一个隐函数化成显函数, 叫做隐函数的显化. 隐函数的显化有时是有困难的, 甚至是不可能的. 但在实际问题中, 有时需要计算隐函数的导数, 因此, 我们希望有一种方法,