中值定理的应用方法与技巧(总10页).doc

上传人:晟*** 文档编号:7838062 上传时间:2021-11-14 格式:DOC 页数:10 大小:695KB
下载 相关 举报
中值定理的应用方法与技巧(总10页).doc_第1页
第1页 / 共10页
中值定理的应用方法与技巧(总10页).doc_第2页
第2页 / 共10页
中值定理的应用方法与技巧(总10页).doc_第3页
第3页 / 共10页
中值定理的应用方法与技巧(总10页).doc_第4页
第4页 / 共10页
中值定理的应用方法与技巧(总10页).doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

中值定理的应用方法与技巧中值定理包括微分中值定理和积分中值定理两部分。微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。积分中值定理有积分第一中值定理和积分第二中值定理。积分第一中值定理为大家熟知,即若在a,b上连续,则在a,b上至少存在一点,使得。积分第二中值定理为前者的推广,即若在a,b上连续,且在a,b上不变号,则在a,b上至少存在一点,使得。一、 微分中值定理的应用方法与技巧三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。例一设在0,1上连续可导,且。证明:任意给定正整数,必存在(0,1)内的两个数,使得成立。证法1:任意给定正整数,令,则在0,1上对应用柯西中值定理得:存在,使得

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 表格模板

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。