利用导数证明不等式的两种通法(共6页).doc

上传人:晟*** 文档编号:7852521 上传时间:2021-11-14 格式:DOC 页数:6 大小:347.50KB
下载 相关 举报
利用导数证明不等式的两种通法(共6页).doc_第1页
第1页 / 共6页
利用导数证明不等式的两种通法(共6页).doc_第2页
第2页 / 共6页
利用导数证明不等式的两种通法(共6页).doc_第3页
第3页 / 共6页
利用导数证明不等式的两种通法(共6页).doc_第4页
第4页 / 共6页
利用导数证明不等式的两种通法(共6页).doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

精选优质文档-倾情为你奉上利用导数证明不等式的两种通法吉林省长春市东北师范大学附属实验学校金钟植 岳海学利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法用列举的方式归纳和总结。一、函数类不等式证明函数类不等式证明的通法可概括为:证明不等式()的问题转化为证明(),进而构造辅助函数,然后利用导数证明函数的单调性或证明函数的最小值(最大值)大于或等于零(小于或等于零)。例1 已知,求证:分析:欲证,只需证函数和在上单调递减即可。证明:令 ,其中则,而所以在上单调递减,即所以;令 ,其中则,所以在上单调递减,即所以。综上所述,评注:证明函数类不等式时,构造辅助函数比较容易,只需将不等式的其中一边变为0,然后另一边的函数作为辅助函数,并利用导数证明其单调性或其最值,进而构造我们所需的不等式的结构即可。根据不等式的对称性,本例也可以构造辅助函数为在上是单调递增的函数(如:利用在上是单调递增来证明不等式),另外不等式证明时,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。