精选优质文档-倾情为你奉上圆中常见辅助线的做法一遇到弦时(解决有关弦的问题时)1.常常添加弦心距,或作垂直于弦的半径(或直径)或再连结过弦的端点的半径。作用:利用垂径定理; 利用圆心角及其所对的弧、弦和弦心距之间的关系; 利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。例:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D二点.求证:AC = BD证明:过O作OEAB于EO为圆心,OEABAE = BE CE = DEAC = BD练习:如图,AB为O的弦,P是AB上的一点,AB = 10cm,PA = 4cm.求O的半径.2.有等弧或证弧等时常连等弧所对的弦或作等弧所对的圆心角.例:如图,已知AB是O的直径,M、N分别是AO、BO的中点,CMAB,DNAB,求证: 证明:(一)连结OC、ODM、N分别是AO、BO的中点OM = AO、ON = BOOA = OB OM = ONCMOA
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。