构造函数法证明导数不等式的八种方法(共8页).doc

上传人:晟*** 文档编号:7871344 上传时间:2021-11-14 格式:DOC 页数:8 大小:743KB
下载 相关 举报
构造函数法证明导数不等式的八种方法(共8页).doc_第1页
第1页 / 共8页
构造函数法证明导数不等式的八种方法(共8页).doc_第2页
第2页 / 共8页
构造函数法证明导数不等式的八种方法(共8页).doc_第3页
第3页 / 共8页
构造函数法证明导数不等式的八种方法(共8页).doc_第4页
第4页 / 共8页
构造函数法证明导数不等式的八种方法(共8页).doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

精选优质文档-倾情为你奉上构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】 已知函数,求证:当时,恒有分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数,从其导数入手即可证明。【解】 当时,即在上为增函数 当时,即在上为减函数故函数的单调递增区间为,单调递减区间于是函数在上的最大值为,因此,当时,即 (右面得证),现证左面,令, 当 ,即在上为减函数,在上为增函数,故函数在上的最小值为,当时,即,综上可知,当 【警示启迪】如果是函数在区间上的最大(小)值,则有(或),那么要证不等式,只要求函数的最大值不超过就可得证2、作差法构造函数证

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。