精选优质文档-倾情为你奉上初中数学竞赛辅导资料(20)代数恒等式的证明甲内容提要证明代数恒等式,在整式部分常用因式分解和乘法两种相反的恒等变形,要特别注意运用乘法公式和等式的运算法则、性质。具体证法一般有如下几种1从左边证到右边或从右边证到左边,其原则是化繁为简。变形的过程中要不断注意结论的形式。2把左、右两边分别化简,使它们都等于第三个代数式。3证明:左边的代数式减去右边代数式的值等于零。即由左边右边0可得左边右边。4,由己知等式出发,经过恒等变形达到求证的结论。还可以把己知的条件代入求证的一边证它能达到另一边,乙例题例1求证:3 n+22n225 n+23 n2 n10(5 n+1+3 n2 n-1) 证明:左边255 n+1(3 n+2+3 n)(2 n+22 n) 105 n+13 n(32+1)2 n-1(232)10(5 n+1+3 n2 n-1)=右边又证:左边25 n+23 n(321)2 n(22+
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。