圆锥曲线中点弦问题(共14页).doc

上传人:晟*** 文档编号:7907137 上传时间:2021-11-15 格式:DOC 页数:14 大小:1.33MB
下载 相关 举报
圆锥曲线中点弦问题(共14页).doc_第1页
第1页 / 共14页
圆锥曲线中点弦问题(共14页).doc_第2页
第2页 / 共14页
圆锥曲线中点弦问题(共14页).doc_第3页
第3页 / 共14页
圆锥曲线中点弦问题(共14页).doc_第4页
第4页 / 共14页
圆锥曲线中点弦问题(共14页).doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

精选优质文档-倾情为你奉上关于圆锥曲线的中点弦问题直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题;(2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。一、求中点弦所在直线方程问题例1 过椭圆内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程。解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:又设直线与椭圆的交点为A(),B(),则是方程的两个根,于是,又M为AB的中点,所以,解得,故所求直线方程为。解法二:设直线与椭圆的交点为A(),B(),M(2,1)为AB的中点,所以,又A、B两点在椭圆上,则,两式相减得,所以,即,故所求直线方程为。解法三:设所求直线与椭圆的一个交点为A(),由于中点为M(2,1),则另一个交点为B(4-),因为A、B两点在椭圆上,所以有,两式相减得,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。