二次函数知识总结范文仅供参考,自行编辑使用二次函数知识总结一、定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax2+bx+c(a0),则称y为x的二次函数。二、二次函数的三种表达式一般式:y=ax2+bx+c(a0)顶点式:y=a(x-h)2+k(a0),此时抛物线的顶点坐标为P(h,k)交点式:y=a(x-x1)(x-x2)(a0)仅用于函数图像与x轴有两个交点时,x1、x2为交点的横坐标,所以两交点的坐标分别为A(x1,0)和B(x2,0),对称轴所在的直线为x=注:在3种形式的互相转化中,有如下关系:h=-,k=;x1,x2=;x1+x2=-三、二次函数的图像从图像可以看出,二次函数的图像是一条抛物线,属于轴对称图形。四、抛物线的性质1.抛物线是轴对称图形,对称轴为直线x=-,对称轴与抛物线唯一的交点是抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-,)。当x=-时,y最值=,当a0时,函数y有最小值;当a0时,函数y有最大值。当-=0