1、屈婉玲版离散数学课后习题答案1第一章部分课后习题参考答案16 设 p、q 的真值为 0;r、s 的真值为 1,求下列各命题公式的真值。(1)p(qr) 0(01) 0 (2) (pr)(qs) (01)(11) 01 0.(3) ( p qr)(pqr) (111) (000) 0(4)( rs)(p q) (01)(10) 00 117判断下面一段论述是否为真:“ 是无理数。并且,如果 3 是无理数,则 也是 2无理数。另外 6 能被 2 整除,6 才能被 4 整除。 ”答:p: 是无理数 1q: 3 是无理数 0r: 是无理数 1 2s: 6 能被 2 整除 1t: 6 能被 4 整除 0
2、命题符号化为: p(qr)(t s)的真值为 1,所以这一段的论述为真。19用真值表判断下列公式的类型:(4)(p q) ( q p)(5)(p r) ( p q)(6)(pq) (qr) (pr)答: (4)p q pq q p q p (pq)( q p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式 /最后一列全为 1(5)公式类型为可满足式(方法如上例)/最后一列至少有一个 1(6)公式类型为永真式(方法如上例)/第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表
3、法求出成真赋值.屈婉玲版离散数学课后习题答案2(1) (pq q)(2)(p(pq)(pr)(3)(pq)(pr)答:(2)(p (pq))(pr) ( p(pq)( pr) ppqr 1所以公式类型为永真式(3) P q r pq pr (pq)(pr)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(pq)(pr) (p(qr)(4)(p q)( pq) (pq) (pq)证明(2)(pq)(pr)( p
4、q)( pr)p(qr)p(qr)(4)(p q)( pq) (p( pq) ( q( pq)(p p)(pq)( q p) ( qq)1(pq) (pq)1(pq) (pq)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)( pq)( qp)(2) (pq)qr(3)(p(qr)(pqr)解:(1)主析取范式屈婉玲版离散数学课后习题答案3( pq)( q p) (p q) ( q p) ( p q) ( q p) ( p q) ( q p) ( q p) (p q) (p q)( p q) (p q) (p q)320m(0,2,3) 主合取范式:( pq)( q p) (p q)
5、 ( q p) ( p q) ( q p)( p ( q p) ( q ( q p)1 (p q)(p q) M1(1)(2) 主合取范式为:(pq) q r ( p q) q r(p q) q r 0所以该式为矛盾式.主合取范式为(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p (q r)(p q r)(p (q r)(p q r)( p ( q r) (p q r)( p (p q r) ( q r) (p q r)1 11所以该式为永真式.屈婉玲版离散数学课后习题答案4永真式的主合取范式为 1主析取范式为(0,1,2,3,4,5,6,7)第三章部分课后习
6、题参考答案14. 在自然推理系统 P 中构造下面推理的证明:(2)前提:p q, (q r),r结论: p(4)前提:q p,q s,s t,t r结论:p q证明:(2) (q r) 前提引入 q r 置换q r 蕴含等值式r 前提引入 q 拒取式p q 前提引入p 拒取式证明(4):t r 前提引入t 化简律q s 前提引入s t 前提引入q t 等价三段论(q t) (t q) 置换(q t) 化简q 假言推理q p 前提引入p 假言推理屈婉玲版离散数学课后习题答案5(11)p q 合取 15 在自然推理系统 P 中用附加前提法证明下面各推理:(1)前提:p (q r),s p,q结论:s r证明s 附加前提引入s p 前提引入p 假言推理p (q r) 前提引入q r 假言推理q 前提引入r 假言推理16 在自然推理系统 P 中用归谬法证明下面各推理:(1)前提:p q, r q,r s结论: p证明:p 结论的否定引入p q 前提引入q 假言推理r q 前提引入r 化简律r s 前提引入r 化简律r r 合取由于最后一步 r r 是矛盾式,所以推理正确.