精选优质文档-倾情为你奉上三角恒等变换的常用方法 肖新勇解答三角函数问题,几乎都要通过恒等变换将复杂问题简单化,将隐性问题明朗化。三角恒等变换的公式很多,主要有“同角三角函数的基本关系”、“诱导公式”、“和、差、倍、半角公式”等,这些公式间一般都存在三种差异,如角的差异、函数名的差异和运算种类的差异,只有灵活有序地整合使用这些公式,消除差异、化异为同,才能得心应手地解决问题,这是三角问题的特点,也是三角问题“难得高分”的根本所在。本文从六个方面解读三角恒等变换的常用技巧。一、 角变换角变换的基本思想是,观察发现问题中出现的角之间的数量关系,把“未知角”分解成“已知角”的“和、差、倍、半角”,然后运用相应的公式求解。例1 已知,求的值。【分析】考虑到“已知角”是,而“未知角”是和,注意到,可直接运用相关公式求出和。【解析】因为,所以,又因为,所以,从而,. 原式=.【点评】(1)若先计算出,则在计算时,要注意符号的选取;(2)本题的另一种自然的思路是,从已知出发,