数列中的整除问题数列中的不等关系数列中的整除问题基础知识1、 整数的基本性质(1) 整数的和、差、积仍为整数(2) 整数的奇偶性,运算规律(3) 若a,bZ,且ab,则ab-1.(4) 最小数原理:自然数集的任何非空子集,均有一个最小的自然数。2、整数性质的应用(1)若变量属于整数,则利用方程与不等式均可求出变量的值;在实数范围内,若要求得变量的值,通常要依赖方程,而不等式只能求出变量的范围,但是在整数范围内,除了方程,在不等式中也可以利用整数的离散型求出变量的值(2)整除问题:若表达式形式较为简单,可通过对常熟进行因数分解,进而确定变量的取值;若表达式次数较高,则可以先利用二项式定理去掉高次的项,再进行处理。(3)多元整数不定方程:当变量的值为整数时,不定方程的解可能有有限多组解,通常处理方式有两个:通过对表达式进行因式分解,对另一侧的常数进行因数分解,进而将不定方程拆成多个方程的方程组,进而解出变量将一个字母视为变量(其余视为参数)进行参变分离,求出含变量函数的值域,进而将参数置于一个范