泛函分析讲义(共10页).docx

上传人:晟*** 文档编号:8020773 上传时间:2021-11-16 格式:DOCX 页数:10 大小:355.52KB
下载 相关 举报
泛函分析讲义(共10页).docx_第1页
第1页 / 共10页
泛函分析讲义(共10页).docx_第2页
第2页 / 共10页
泛函分析讲义(共10页).docx_第3页
第3页 / 共10页
泛函分析讲义(共10页).docx_第4页
第4页 / 共10页
泛函分析讲义(共10页).docx_第5页
第5页 / 共10页
点击查看更多>>
资源描述

精选优质文档-倾情为你奉上第三章 赋范空间3.1. 范数的概念“线性空间”强调元素之间的运算关系,“度量空间”则强调元素之间的距离关系,两者的共性在于:只研究元素之间的关系,不研究元素本身的属性。为了求解算子方程,需要深入地了解函数空间的结构与性质,为此,我们不仅希望了解函数之间的运算关系和距离关系,还希望了解函数本身的属性。那么,究竟需要了解函数的什么属性呢?3.1.1. 向量的长度为了回答上述问题,我们需要从最简单的函数空间欧氏空间中寻找灵感。回想一下,三维欧氏空间中的元素被称为“向量”,向量最重要的两大属性是:长度和方向,向量的许多重要性质都是由其长度和方向所决定的。这一章的任务就是将欧氏空间中向量的长度推广为(以函数空间为原型的)一般线性空间中元素的广义长度,下一章的任务就是将欧氏空间中向量的方向推广为(以函数空间为原型的)一般线性空间中元素的广义方向。可以想象:其元素具有广义长度和广义方向的线性空间必将像欧氏空间那样,呈现出丰富多彩的性质,并且这些性质必将有助于求解算子方程。图3.1.1. 三维欧氏空间中向量的大小和方向矩

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。