精选优质文档-倾情为你奉上立体几何高考文科数学类型题(1)老师专用1、异面直线所成的角定义:设a,b是两条异面直线,经过空间任一点O作直线aa,bb,把a与b所成的锐角(或直角)叫做异面直线a,b所成的角(或夹角). 范围:.考点1. 求两条异面直线所成角(1)求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移即采用补形法作出平面角(2)求异面直线所成的角的三步曲:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成的角,转化为解三角形问题,进而求解.对异面直线概念的理解(1)“不同在任何一个平面内”指这两条直线不能确定任何一个平面,因此异面直线既不平行,也不相交(2)不能把异面直线误解为:分别在不同平面内的两条直线为异面直线(3)异面直线的公垂线有且仅有一条例1.空间四边形ABCD中,ABCD且AB与CD所成的角为30,E、