精选优质文档-倾情为你奉上勾股定理及其逆定理复习典型例题1. 勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2)勾股定理的逆定理:如果三角形的三边长:a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形。2. 勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。3. 如果用勾股定理的逆定理判定一个三角形是否是直角三角形(1)首先确定最大边(如:C,但不要认为最大边一定是C)(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则ABC是以C为直角的三角形。(若c2a2+b2则ABC是以C为钝角的三角形,若c2a2+b2则ABC是以C为锐角三角形)二、例题分析例1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。解:设此直角三角形两直角边分别是3x,4x,根据题意得:(3x)2+(4x)2=202化简得x2=16;直角三角形的面积