精选优质文档-倾情为你奉上圆锥曲线常见七大题型 (1) 中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(X1,Y1),(X2,Y2) ,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的情况讨论),消去四个参数。 (2) 焦点三角形问题 椭圆或双曲线上一点P,与两个焦点构成的三角形问题,常用 正、余弦定理搭桥。 (3) 直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。 (4)圆锥曲线的相关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。 若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。 对于可以设法