精选优质文档-倾情为你奉上线性代数公式大全第一章行列式1逆序数1.1 定义个互不相等的正整数任意一种排列为:,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不同时,就说有一个逆序数,该排列全部逆序数的总合用表示,等于它所有数字中后面小于前面数字的个数之和。1.2 性质一个排列中任意两个元素对换,排列改变奇偶性,即 。证明如下:设排列为,作次相邻对换后,变成,再作次相邻对换后,变成,共经过次相邻对换,而对不同大小的两元素每次相邻对换逆序数要么增加1 ,要么减少1 ,相当于,也就是排列必改变改变奇偶性,次相邻对换后,故原命题成立。 2阶行列式的5大性质性质1:转置(行与列顺次互换)其值不变。性质2:互换任意两行(列)其值变号。 性质3:任意某行(列)可提出公因子到行列式符号外。性质4:任意行列式可按某行(列)分解为两个行列式之和。性质5:把行列式某行(列)倍后再加到另一行(列),其值不变。行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。评 注 对性质4的