解析函数的孤立奇点(共5页).doc

上传人:晟*** 文档编号:8098812 上传时间:2021-11-17 格式:DOC 页数:5 大小:215.50KB
下载 相关 举报
解析函数的孤立奇点(共5页).doc_第1页
第1页 / 共5页
解析函数的孤立奇点(共5页).doc_第2页
第2页 / 共5页
解析函数的孤立奇点(共5页).doc_第3页
第3页 / 共5页
解析函数的孤立奇点(共5页).doc_第4页
第4页 / 共5页
解析函数的孤立奇点(共5页).doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

精选优质文档-倾情为你奉上第五章教学课题:第二节 解析函数的孤立奇点教学目的:1、掌握孤立奇点的三种类型;2、理解孤立奇点的三种类型的判定定理;3、归纳奇点的所有情况;4、充分理解关于本性奇点的两大定理。教学重点:孤立奇点的三种类型教学难点:孤立奇点的三种类型的判定定理教学方法:启发式、讨论式教学手段:多媒体与板书相结合教材分析:孤立奇点是解析函数中最简单最重要的一种类型,以解析函数的洛朗级数为工具,研究解析函数在孤立奇点去心邻域内一个解析函数的性质。教学过程:1、解析函数的孤立奇点:设函数f(z)在去掉圆心的圆盘内确定并且解析,那么我们称为f(z)的孤立奇点。在D内,f(z)有洛朗展式其中是圆。为f(z)的正则部分,为f(z)的主要部分。例如,0是的孤立奇点。一般地,对于上述函数f(z),按照它的洛朗展式含负数幂的情况(主要部分的情况),可以把孤立奇点分类如下:2、可去奇点 如果当时n=-1,-2,-3,,那么我们说是f(z)的可去奇点,或者说f(z)在有可去奇点。这是因为令,就得

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。