精选优质文档-倾情为你奉上齐次线性方程组的基础解系及其应用齐次线性方程组一般表示成AX=0的形式,其主要结论有:(1)齐次线性方程组AX=0一定有解,解惟一的含义是只有零解,有非零解的含义是解不惟一(当然有无穷多解)。有非零解的充要条件是R(A)n;(2)齐次线性方程组AX=0解的线性组合还是它的解,因而解集合构成向量空间,向量空间的极大线性无关组,叫基础解系;(3)齐次线性方程组AX=0,当系数矩阵的秩r(A)小于未知量的个数n时,存在基础解系,并且基础解系中含有n-r(A)个解向量;(4)对于齐次线性方程组AX=0,如果r(A)n,则任意n-r(A)个线性无关的解都是基础解系。定理1:设A是的矩阵,B是的矩阵,并且AB=0,那么r(A)+r(B)分析:这是一个非常重要的结论,多年考试题与它有关。同学们还要掌握本定理的证明方法。证:设,则,AB=0,即 所以 所以,都是齐次线性方程组AB=0的解r(B)=秩所以 r(A)+r(B)评论:AB=0,对B依列分块,时处理此类问题的惯用方法。例1:要使都是线性