精选优质文档-倾情为你奉上高二数学圆锥曲线知识整理知识整理解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。1、 三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:,其中F为定点,d为P到定直线的l距离,Fl,如图。因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。当0e1时,点P轨迹是双曲线;当e=1时,点P轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:P|PF1|+|PF2|=2a,2a|F1F2|