精选优质文档-倾情为你奉上求异面直线所成的角祁正红 求异面直线所成的角,一般有两种方法,一种是几何法,这是高二数学人教版(A)版本倡导的传统的方法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求。还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解,这是高二数学人教版(B)倡导的方法,下面举例说明两种方法的应用。 例:长方体ABCDA1B1C1D1中,AB=AA1=2cm,AD=1cm,求异面直线A1C1与BD1所成的角。 解法1:平移法 设A1C1与B1D1交于O,取B1B中点E,连接OE,因为OE/D1B,所以C1OE或其补角就是异面直线A1C1与BD1所成的角C1OE中 所以异面直线所成的角为图1 解法2:补形法 在长方体ABCDA1B1C1D1的面BC1上补上一个同样大小的长方体,将AC平移到BE,则D1BE或其补角就是异面直线A1C1与BD1所成的
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。