精选优质文档-倾情为你奉上第一章 矢量分析 在上的分量 , , (标量三重积), 标量函数的梯度 求矢量的散度散度定理:矢量场的散度在体积V上的体积分等于在矢量场在限定该体积的闭合曲面S上的面积分,即,散度定理是矢量场中的体积分与闭合曲面积分之间的一个变换关系。 给定一矢量函数和两个点,求沿某一曲线积分,积分与路径无关就是保守场。 如何判断一个矢量是否可以由一个标量函数的梯度表示或者由一个矢量函数的旋度表示?如果 ,则既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;如果,则该矢量可以由一个标量函数的梯度表示;如果,则该矢量可以由一个矢量函数的旋度表示。矢量的源分布为 . 证明和证明:解 (1)对于任意闭合曲线为边界的任意曲面,由斯托克斯定理有题1.27图由于曲面是任意的,故有(2)对于任意闭合曲面为边界的体积,由散度定理有其中和如题1.27图所示。由斯托克斯定理
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。